

Medis 3D QCA and Its Applications

Shengxian (Sanven) Tu, PhD

Division of Image Processing (LKEB) Department of Radiology Leiden University Medical Center & Applied Research Medis medical imaging systems bv

The Size of bifurcation core (L) is independent from the extent of the disease at the bifurcation!

Bifurcation diameter models

Reference diameter optimization by bifurcation diameter models!

Coronary tree reconstruction

Courtesy: Niels R. Holm

Application 1 – Optimal views

Application 2 – Optimal views

Application 2 – Optimal views С ← ABOVA Anatomydefined bifurcation optimal 7 RAO, 55 Cranial viewing angle C' A' ← OBOVA Obtainable bifurcation optimal trajectory 9 LAO, 40 Cranial viewing angle

Tu et al. Int J Cardiovasc Imaging 2012, 28:1617-1625

Application 2 – Optimal views

□ LM/LAD/LCx
▽ LAD/Diagonal
+ LCx/OM
* PDA/PLA

ABOVA could not be obtained in 56.7% of the population:

•LM/LAD/LCx (81.6%) •LAD/Diagional (78.4%) •PDA/PLA (48.8%) •LCx/OM (17.6%)

\bigvee_{EBC} Application 3 – Bifurcation angles

Table2. Bifurcation Dimensions Assessed by 3D Quantitative Coronary Angiography st

	ABOVA		OBOVA		BA		CTA†
	Rotation*	Angulation ⁺	Rotation*	Angulation ⁺	РВА	DBA	DBA
LM/LAD/LCx	5±33	47±35	-4±39	35±16	128±24‡	80±21	80°±27°
LAD/Diagonal	4±38	-50±14	-14±28	-33±5	151±13	48±16	$46^{\circ} \pm 19^{\circ}$
LCx/OM	-21±32	27±17	-18±31	25±13	146±18	57±16	$48^{\circ} \pm 24^{\circ}$
PDA/PLA	-34±21	-36±21	-28±25	-29±15	145±19	59±17	53°±27°

*Positive value represents Right Anterior Oblique and negative value represents Left Anterior Oblique; *Positive value represents Caudal and negative value represents Cranial. *Angle between LM and LCx. ABOVA = Anatomy-defined bifurcation optimal view angle; OBOVA = Obtainable bifurcation optimal viewing angle; BA = Bifurcation angle; PBA = Proximal bifurcation angle; DBA = Distal bifurcation angle.

*Tu et al. Int J Cardiovasc Imaging 2012, 28:1617-1625

† Pflederer et al. Invest Radiol 2006; 41:793-798.

C EBC Application 4 – FFR computation

RAO 7, CRAN 70 DS 44%, 23.8 mm Pro Bif Angle: 161 Dis Bif Angle: 30 Pro: 3.2 mm, 2.9 mm Dis: 2.5 mm, 2.5 mm

QAngio XA 3D

C Application 4 – FFR computation

Meshing: finite volume method

C EBC Application 4 – FFR computation

⁹th European Bifurcation Club meeting - London, UK - 18th & 19th October 2013

C EBC Application 4 – FFR computation

C Application 5 – Flow simulation

Application 6 – Co-registration and sizing

Commercially avaialbe as a research tool for both on-line and off-line analyses (QAngioOCT RE, Medis Specials bv, Leiden, NL).

V_{EBC} Application 7 – Fusion with OCT

JACC: CARDIOVASCULAR INTERVENTIONS © 2012 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC.

VOL. 5. NO. 8. 2012 ISSN 1936-8798/536.00 http://dx.doi.org/10.1016/j.jcin.2012.03.024

IMAGES IN INTERVENTION

First Presentation of 3-Dimensional Reconstruction and Centerline-Guided Assessment of Coronary **Bifurcation by Fusion of X-Ray Angiography** and Optical Coherence Tomography

Shengxian Tu, PHD,* Niels R. Holm, MD,† Evald H. Christiansen, MD, PHD,† Johan H. C. Reiber, PHD*

Leiden, the Netherlands; and Aarhus, Denmark

Sidebranch centerlineguided OCT assessment

Application 7 – Fusion with OCT

Tu et al. Circ Cardiovasc Interv 2013, 6:e15-e17.

\bigvee_{EBC} Application 7 – Fusion with OCT

Courtesy: Yves Louvard 9th European Bifurcation Club meeting - London, UK - 18th & 19th October 2013

Conclusions

➢ 3D QCA offers an accurate tool to enhance optimal stent sizing and positioning;

 \succ Computation of FFR_{QCA} is a novel method that allows the assessment of the functional significance of intermediate stenosis;

Fusion of 3D QCA and OCT provides more anatomical details. Further studies are warrant to provide more insights into its added values.