

# Medis 3D QCA and Its Applications 

Shengxian (Sanven) Tu, PhD

Division of Image Processing (LKEB)
Department of Radiology
Leiden University Medical Center
\&
Applied Research
Medis medical imaging systems bv

## 3D bifurcation model



9th European Bifurcation Club meeting - London, UK - 18th \& 19th October 2013

## 3D bifurcation model


RAO 9, CRAN 63
DS 53\%, 10.1 mm
Pro Bif Angle: 165
Dis Bif Angle: 48
Pro: $3.0 \mathrm{~mm}, 2.9 \mathrm{~mm}$
Dis: $2.0 \mathrm{~mm}, 2.0 \mathrm{~mm}$


QAngio XA 3D
The Size of bifurcation core $(\mathrm{L})$ is independent from the extent of the disease at the bifurcation!

## 3D bifurcation model

- Bifurcation diameter models

Model
HK
Finet
Murray

Relationship

$$
D_{m}^{\frac{7}{3}}=D_{1}^{\frac{7}{3}}+D_{s}^{\frac{7}{3}}
$$

$$
\begin{gathered}
D_{m}=0.678 \times\left(D_{1}+D_{s}\right) \\
D_{m}^{3}=D_{1}^{3}+D_{s}^{3}
\end{gathered}
$$



## 3D bifurcation model



Reference diameter optimization by bifurcation diameter models!
$\Upsilon_{E B C}$ Coronary tree reconstruction


Courtesy: Niels R. Holm

## Application 1 - Optimal views



Working view 2
Working view 1
Software optimal view
Courtesy: Tom Adriaenssens and Andy Wiyono

## Application 2 - Optimal views



Foreshortening: 4.4\%
Working view 1
Working view 2
Software optimal view

## Application 2 - Optimal views


$\leftarrow$ ABOVA
Anatomydefined bifurcation optimal viewing angle
$\leftarrow$ OBOVA
Obtainable bifurcation optimal viewing angle

Tu et al. Int J Cardiovasc Imaging 2012, 28:1617-1625

## Application 2 - Optimal views



- LM/LAD/LCx
$\nabla$ LAD/Diagonal
+ LCx/OM
* PDA/PLA

ABOVA could not be obtained in $56.7 \%$ of the population:
-LM/LAD/LCx (81.6\%)
-LAD/Diagional (78.4\%)
-PDA/PLA (48.8\%)
-LCx/OM (17.6\%)

The distribution of ABOVA, $\mathrm{n}=194$
9th European Bifurcation Club meeting - London, UK - 18th \& 19th October 2013

## Application 3 - Bifurcation angles

Table2. Bifurcation Dimensions Assessed by 3D Quantitative Coronary Angiography*

|  | ABOVA |  |  |  |  |  | $\begin{aligned} & \mathrm{CTA} \dagger \\ & \mathrm{DBA} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rotation* | Angulation ${ }^{\dagger}$ |  |  |  |  |  |
| LM/LAD/LCx | $5 \pm 33$ | $47 \pm 35$ | $-4 \pm 39$ | $35 \pm 16$ | $128 \pm 24^{\ddagger}$ | $80 \pm 21$ | $80^{\circ} \pm 27^{\circ}$ |
| LAD/Diagonal | $4 \pm 38$ | $-50 \pm 14$ | $-14 \pm 28$ | $-33 \pm 5$ | $151 \pm 13$ | $48 \pm 16$ | $46^{\circ} \pm 19^{\circ}$ |
| LCx/OM | $-21 \pm 32$ | $27 \pm 17$ | $-18 \pm 31$ | $25 \pm 13$ | $146 \pm 18$ | $57 \pm 16$ | $48^{\circ} \pm 24^{\circ}$ |
| PDA/PLA | $-34 \pm 21$ | $-36 \pm 21$ | $-28 \pm 25$ | $-29 \pm 15$ | $145 \pm 19$ | $59 \pm 17$ | $53^{\circ} \pm 27^{\circ}$ |

*Positive value represents Right Anterior Oblique and negative value represents Left Anterior Oblique; ${ }^{\dagger}$ Positive value represents Caudal and negative value represents Cranial. ${ }^{\ddagger}$ Angle between LM and LCx. ABOVA = Anatomy-defined bifurcation optimal view angle; OBOVA = Obtainable bifurcation optimal viewing angle; $\mathrm{BA}=$ Bifurcation angle; $\mathrm{PBA}=$ Proximal bifurcation angle; $\mathrm{DBA}=$ Distal bifurcation angle.
*Tu et al. Int J Cardiovasc Imaging 2012, 28:1617-1625
$\dagger$ Pflederer et al. Invest Radiol 2006; 41:793-798.

# $\bigodot_{E B C}$ Application 3 - Bifurcation angles 



## Obc Application 4 - FFR computation



QAngio XA


## Meshing: finite volume method



## Late breaking technology

$F F R_{\text {QCA }}=0.78$
vs.
FFR $=0.78$

$\longleftarrow \mathrm{FFR}_{\text {QCA }}$ pullback

9th European Bifurcation Club meeting - London, UK - 18th \& 19th October 2013

$\bigodot_{\text {EBC }}$ Application 5 - Flow simulation


# $\bigcap_{E B C}$ <br> <br> Application 6 - Co-registration and sizing 

 <br> <br> Application 6 - Co-registration and sizing}


Commercially avaialbe as a research tool for both on-line and off-line analyses (QAngioOCT RE, Medis Specials bv, Leiden, NL).

## $\Upsilon_{E B C}$ Application 7 - Fusion with OCT

- 2012 by the amebican college of cardiology foundation published by elsevier inc

First Presentation of 3-Dimensional Reconstruction and Centerline-Guided Assessment of Coronary Bifurcation by Fusion of X-Ray Angiography and Optical Coherence Tomography

## Sidebranch centerlineguided OCT assessment

# Circulation <br> Cardiovascular Interventions 

In Vivo Flow Simulation at Coronary Bifurcation Reconstructed by Fusion of
3-Dimensional X-ray Angiography and Optical Coherence Tomography Shengxian Tu, Stylianos A. Pyxaras, Yingguang Li, Emanuele Barbato, Johan H.C. Reiber and William Wijns
Circ Cardiovasc Interv 2013;6;e15-e17;

## Fusion of two OCT pullbacks at bifurcation



## Application 7 - Fusion with OCT



Tu et al. Circ Cardiovasc Interv 2013, 6:e15-e17.

## Application 7 - Fusion with OCT



Courtesy: Yves Louvard
9th European Bifurcation Club meeting - London, UK - 18th \& 19th October 2013

## Conclusions

> 3D QCA offers an accurate tool to enhance optimal stent sizing and positioning;
$>$ Computation of $\mathrm{FFR}_{\mathrm{QCA}}$ is a novel method that allows the assessment of the functional significance of intermediate stenosis;

- Fusion of 3D QCA and OCT provides more anatomical details. Further studies are warrant to provide more insights into its added values.

