

Left Main OCT-guided PCI

Nicolas Amabile, MD, PhD

Cardiology Department,
Institut Mutualiste Montsouris, Paris

2018 ESC/EACTS Guidelines on myocardial revascularization

Recommendations on intravascular imaging for procedural optimization

Recommendations	Class ^a	Level ^b	
IVUS or OCT should be considered in selected patients to optimize stent implantation. 603,612,651-653	lla	В	
IVUS should be considered to optimize treatment of unprotected left main lesions. ³⁵	lla	В	© ESC 2018

IVUS = intravascular ultrasound; OCT = optical coherence tomography.

^aClass of recommendation.

^bLevel of evidence.

IS LM OCT ANALYSIS FEASIBLE?

ARTEFACTS

Retrospective analysis of 54 LMA OCT runs % non-analysable images

VESSEL SIZE

TROFI trial N=46 LMA OCT runs % analysable quadrants

No. of frames with out-of-view phenomenon	
Proximal right coronary artery, n (%)	56/5,488 (1.0)
≤1 quadrant, n (%)	56/5,488 (1.0)
>1 quadrant and ≤2 quadrants, n (%)	0/5,488 (0)
>2 quadrants and ≤3 quadrants, n (%)	0/5,488 (0)
>3 quadrants and ≤4 quadrants, n (%)	0/5,488 (0)
Left main stem, n (%)	306/3,443 (8.9)
≤1 quadrant, n (%)	68/3,443 (2.0)
>1 quadrant and ≤2 quadrants, n (%)	212/3,443 (6.2)
>2 quadrants and ≤3 quadrants, n (%)	26/3,443 (0.8)
>3 quadrants and ≤4 quadrants, n (%)	0/3,443 (0)

LMA was not entirely analyzed in only 9% of the cases

TIPS & TRICKS FOR LM OCT ANALYSIS

TIPS & TRICKS FOR SUCCESSFUL LM OCT ANALYSIS

- Avoid « aggressive » guiding catheter (EBU / AL)
- Increase Field of view
- Improve flush quality

Large vessel? Increase field of view!

Decrease Artefacts? Improve flush quality!

- Coaxial Injection
- Try to get a proper contrast injection with no blood during 5 s!
- Contrast medium volume: 20-25 ml
- Injection debit: 4 5 ml/s

Burzotta et al., Eurointervention 2015

INJECTION 25 cc

LM dimensions quantifications: OCT vs. IVUS

LM analysis by OCT is feasible

Assessment of LM dimensions by IVUS and OCT are well correlated

Lumen Areas measured by OCT (10.8±2.5) are smaller than in IVUS (11.2±2.6 mm2)

LM PCI quality assessment : OCT vs. IVUS

LM PCI quality assessment : OCT vs. IVUS

LM PCI quality assessment : OCT vs. IVUS

	IVUS	FD-OCT	<i>P</i> -value		IVUS	FD-OCT	<i>P</i> -value
Pre-PCI				Post-PCT			
Lesion completeness				Lumen area (mm²)			
Proximal completeness, n (%)	31 (93.9)	4 (12.5)	< 0.001	Mean	10.85 ± 2.47	11.24 ± 2.66	0.132
Distal completeness, n (%)	33 (100)	29 (90.6)	0.081	Min	7.21 ± 2.23	7.18 ± 2.15	0.875
Total length (mm)	21.89 ± 10.44	20.72 ± 10.05	0.010	Stent area (mm²)			
ULM body length (mm)	7.53 ± 3.57	6.45 ± 3.35	0.002	Mean	10.44 ± 2.33	10.49 ± 2.32	0.821
Lumen area (mm²)				Min	6.88 ± 2.03	6.79 ± 2.09	0.534
Mean	7.58 ± 2.61	7.60 ± 2.63	0.936	Reference			
Min	3.46 ± 1.66	2.94 ± 1.77	0.002	Lumen area (mm²)	7.81 ± 2.71	7.94 ± 2.37	0.641
Intraluminal	0 (0.00)	3 (9.4)	0.081	Tissue protruding area (mm ²)	0.11 ± 0.07	0.23 ± 0.09	< 0.001
thrombus, n (%) PRE	3.7.4	. (0.1)	3.7.4	Malapposition area (mm ²)	0.12 ± 0.36	0.43 ± 0.51	< 0.001
Vessel out of screen, n (%)	NA	1 (0.1)	NA	Malapposition volume (mm ³)	1.95 ± 5.69	7.73 ± 7.60	< 0.001
				Intraluminal thrombus, n (%)	0 (0.00)	2 (5.9)	0.154
				Proximal edge dissection, n (%)	0 (0.00)	1 (3.0)	0.317
				Distal edge dissection, n (%)	2 (6.1)	10 (30.3)	0.011

OCT guided LM PCI in daily practice

- - OM1 PCI with EES 2.75 x 23 mm implantation

- - POT with NC balloon 4.5 x 6 mm (2 inflations) & wires exchange

RePOT with NC balloon 4.5 x 6 mm

- Ostial Cx post dilation with NC balloon 3.0 x 12 mm
- Final result

- Prospective, multicentre study
- Main objective: To evaluate the feasibility of standardized OCTguided LM PCI using XIENCE EES & 3D OCT protocols
- Secondary objectives: To evaluate the safety & efficiency of standardized OCT-guided LM PCI

Left Main OCT-guided PCI

- LM OCT-guided PCI is feasible and appears to be an attractive option to optimize results.
- Ostial LM disease is currently a limitation of OCT analysis
- OCT-guided PCI is more sensitive than IVUS to detect early abnormalities.
- This option has to be evaluated in future clinical studies.

Left Main OCT-guided PCI

- LM OCT-guided PCI is feasible and appears to be an attractive option to optimize results.
- Ostial LM disease is currently a limitation of OCT analysis
- OCT-guided PCI is more sensitive than IVUS to detect early abnormalities.
- This option has to be evaluated in future clinical studies.