Left Main OCT-guided PCI Nicolas Amabile, MD, PhD Cardiology Department, Institut Mutualiste Montsouris, Paris #### 2018 ESC/EACTS Guidelines on myocardial revascularization #### Recommendations on intravascular imaging for procedural optimization | Recommendations | Class ^a | Level ^b | | |---|--------------------|--------------------|------------| | IVUS or OCT should be considered in selected patients to optimize stent implantation. 603,612,651-653 | lla | В | | | IVUS should be considered to optimize treatment of unprotected left main lesions. ³⁵ | lla | В | © ESC 2018 | IVUS = intravascular ultrasound; OCT = optical coherence tomography. ^aClass of recommendation. ^bLevel of evidence. #### IS LM OCT ANALYSIS FEASIBLE? **ARTEFACTS** #### Retrospective analysis of 54 LMA OCT runs % non-analysable images #### **VESSEL SIZE** ## TROFI trial N=46 LMA OCT runs % analysable quadrants | No. of frames with out-of-view phenomenon | | |---|-----------------| | Proximal right coronary artery, n (%) | 56/5,488 (1.0) | | ≤1 quadrant, n (%) | 56/5,488 (1.0) | | >1 quadrant and ≤2 quadrants, n (%) | 0/5,488 (0) | | >2 quadrants and ≤3 quadrants, n (%) | 0/5,488 (0) | | >3 quadrants and ≤4 quadrants, n (%) | 0/5,488 (0) | | Left main stem, n (%) | 306/3,443 (8.9) | | ≤1 quadrant, n (%) | 68/3,443 (2.0) | | >1 quadrant and ≤2 quadrants, n (%) | 212/3,443 (6.2) | | >2 quadrants and ≤3 quadrants, n (%) | 26/3,443 (0.8) | | >3 quadrants and ≤4 quadrants, n (%) | 0/3,443 (0) | | | | LMA was not entirely analyzed in only 9% of the cases #### TIPS & TRICKS FOR LM OCT ANALYSIS # TIPS & TRICKS FOR SUCCESSFUL LM OCT ANALYSIS - Avoid « aggressive » guiding catheter (EBU / AL) - Increase Field of view - Improve flush quality ## Large vessel? Increase field of view! # Decrease Artefacts? Improve flush quality! - Coaxial Injection - Try to get a proper contrast injection with no blood during 5 s! - Contrast medium volume: 20-25 ml - Injection debit: 4 5 ml/s Burzotta et al., Eurointervention 2015 **INJECTION 25 cc** # LM dimensions quantifications: OCT vs. IVUS LM analysis by OCT is feasible Assessment of LM dimensions by IVUS and OCT are well correlated Lumen Areas measured by OCT (10.8±2.5) are smaller than in IVUS (11.2±2.6 mm2) # LM PCI quality assessment : OCT vs. IVUS # LM PCI quality assessment : OCT vs. IVUS # LM PCI quality assessment : OCT vs. IVUS | | IVUS | FD-OCT | <i>P</i> -value | | IVUS | FD-OCT | <i>P</i> -value | |--------------------------------|-------------------|-------------------|-----------------|---|------------------|------------------|-----------------| | Pre-PCI | | | | Post-PCT | | | | | Lesion completeness | | | | Lumen area (mm²) | | | | | Proximal completeness, n (%) | 31 (93.9) | 4 (12.5) | < 0.001 | Mean | 10.85 ± 2.47 | 11.24 ± 2.66 | 0.132 | | Distal completeness, n (%) | 33 (100) | 29 (90.6) | 0.081 | Min | 7.21 ± 2.23 | 7.18 ± 2.15 | 0.875 | | Total length (mm) | 21.89 ± 10.44 | 20.72 ± 10.05 | 0.010 | Stent area (mm²) | | | | | ULM body length (mm) | 7.53 ± 3.57 | 6.45 ± 3.35 | 0.002 | Mean | 10.44 ± 2.33 | 10.49 ± 2.32 | 0.821 | | Lumen area (mm²) | | | | Min | 6.88 ± 2.03 | 6.79 ± 2.09 | 0.534 | | Mean | 7.58 ± 2.61 | 7.60 ± 2.63 | 0.936 | Reference | | | | | Min | 3.46 ± 1.66 | 2.94 ± 1.77 | 0.002 | Lumen area (mm²) | 7.81 ± 2.71 | 7.94 ± 2.37 | 0.641 | | Intraluminal | 0 (0.00) | 3 (9.4) | 0.081 | Tissue protruding area (mm ²) | 0.11 ± 0.07 | 0.23 ± 0.09 | < 0.001 | | thrombus, n (%) PRE | 3.7.4 | . (0.1) | 3.7.4 | Malapposition area (mm ²) | 0.12 ± 0.36 | 0.43 ± 0.51 | < 0.001 | | Vessel out of screen, n (%) | NA | 1 (0.1) | NA | Malapposition volume (mm ³) | 1.95 ± 5.69 | 7.73 ± 7.60 | < 0.001 | | | | | | Intraluminal thrombus, n (%) | 0 (0.00) | 2 (5.9) | 0.154 | | | | | | Proximal edge dissection, n (%) | 0 (0.00) | 1 (3.0) | 0.317 | | | | | | Distal edge dissection, n (%) | 2 (6.1) | 10 (30.3) | 0.011 | #### OCT guided LM PCI in daily practice - - OM1 PCI with EES 2.75 x 23 mm implantation - - POT with NC balloon 4.5 x 6 mm (2 inflations) & wires exchange RePOT with NC balloon 4.5 x 6 mm - Ostial Cx post dilation with NC balloon 3.0 x 12 mm - Final result - Prospective, multicentre study - Main objective: To evaluate the feasibility of standardized OCTguided LM PCI using XIENCE EES & 3D OCT protocols - Secondary objectives: To evaluate the safety & efficiency of standardized OCT-guided LM PCI #### **Left Main OCT-guided PCI** - LM OCT-guided PCI is feasible and appears to be an attractive option to optimize results. - Ostial LM disease is currently a limitation of OCT analysis - OCT-guided PCI is more sensitive than IVUS to detect early abnormalities. - This option has to be evaluated in future clinical studies. ### Left Main OCT-guided PCI - LM OCT-guided PCI is feasible and appears to be an attractive option to optimize results. - Ostial LM disease is currently a limitation of OCT analysis - OCT-guided PCI is more sensitive than IVUS to detect early abnormalities. - This option has to be evaluated in future clinical studies.