EBC 2015 BRS in bifurcations (1)

T-stenting and small protrusion: technical issues and its role in BRS era

Azeem Latib MD

EMO-GVM Centro Cuore Columbus and San Raffaele Scientific Institute, Milan, Italy

Potential conflicts of interest

Speaker's name: Azeem Latib

☑ I have the following potential conflicts of interest to report:

Consultant: 4-Tech, DIRECT FLOW MEDICAL, MEDTRONIC, MILLIPEDE

Honorarium: BOSTON SCIENTIFIC, ACIST MEDICAL, ABBOTT, SPECTRANETICS

Clinical History

- 53 yr-old male
- CV risk factors:
 - Obesity (130kg, BMI=40)
 - Hypertension
 - Type 2 Diabetes on oral hypoglycemics
- Known with CAD
 - 1999: PCI of OM with BMS \rightarrow occlusive ISR
- Presents with:
 - Effort-induced angina (CCS 3)
 - Stress test positive

Baseline Angiogram

- 1. Pre-dilation with a 3.0mm NC balloon on LAD
- 2. Pre-dilation with a 3.0mm NC balloon on diagonal

BVS stenting on LAD

SB dilatation through MB-BVS

Effect of SB dilatation on a 3x28mm BVS

SB dilatation with 2.5mm balloon

SB dilatation with 3.0mm balloon

Side Branch Dilatation

In 3.0mm Absorb BRS, the safe threshold without fracture was 10 atm for side branch dilatation with a 3.0mm NC balloon.

Post-dilatation on LAD followed by KBI

- 1. Post-dilation with a 3.5mm NC balloon on LAD (24atm.)
- 2. KBI with 3.5/3.0mm balloons (small protrusion of SB-balloon)
- 3. Despite KBI, significant stenosis at diagonal ostium remains

"Hug-Snug" Kissing Balloon Inflation

Kissing Balloon Inflation

The safe threshold for mini-KBT in 3.0mm Absorb BRS with 3.0mm NC balloons was 5atm.

Mini-KBPD: 3.0mm NC in 3.0mm Absorb

5atm 15atm

Ormiston J et al, EuroIntervention 2014

Mini-KBPD: 3.0mm NC in 3.0mm Absorb

Ormiston J et al, EuroIntervention 2014

Provisional Approach -requiring a 2nd stent in the SB

TAP

Reverse Crush

Culotte

Advantages

Easy to perform No recrossing

Complete coverage of ostium

Any anatomy

Complete coverage of ostium

Disadvantages

Struts protruding into MB

Recrossing into SB 3 layers of struts

More labourious
Rewiring both branches
Double stent layer

BVS in Bifurcations – Milan Experience

BVS only at SB-ostium (n=9)
MB-ostium (n=1)

Provisional single-stenting (n=99)

Systematic double-stenting (n=23)

BVS on both MB and SB (n=13)

- T-stenting (n=9)
- Mini-crush (n=3)
- V-stenting (n=1)

BVS on MB and DES on SB (n=10)

- T-stenting (n=2)
- Mini-crush (n=7)
- Crush (n=1)

Dilate MB BVS struts toward SB (total n=36, 27.3%) (≤8 atm. in SB)

Final kissing inflation (n=8)

Finish procedure (n=71)

T-stenting with minimal protrusion (2 BVS or 5 DES on SB) (n=7)

Kissing inflation with minimal protrusion of SB balloon (n=14)

Dilatation at SB-ostium (n=7)

TAP technique

- 1. BVS 3.0 x 12mm on diagonal
- 2. KBI with 3.5/3.0mm balloons (small protrusion of SB-balloon)
- 3. Sequential deflation of balloons → deflate MB always first

Importance of Sequential Deflation with the TAP technique

Don't deflate SB balloon first or both balloons together

Importance of Sequential Deflation with the TAP technique

Baseline

Final result after TAP

IVUS showing negative effect of not deflating MB balloon first

Follow-up showing focal restenosis at ostium

Initial and final angiograms

Final IVUS images

Bench Testing of TAP technique

T-stenting after deployment of a 2.5x18 mm BVS and at 12 atm through the dilated main vessel BVS struts, and after a FKB with 3.0x20 and 2.5x20 mm balloons, both inflated to 8 atms

Conclusions

- TAP is the preferred and easiest to perform technique to implant a stent in the SB after provisional
- True for DES and BRS
- Current BRS may be difficult to pass through MB BRS struts and we currently more often perform TAP with DES in SB
- Sequential deflation of balloons when performing FKBI is essential to maintain optimal final result

