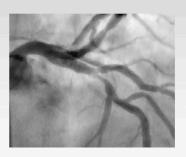


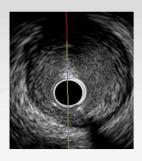
The TOP 3 Take Home Messages from the

Bifurcation Stenting Guidance: OCT, IVUS, FFR & Angio

Parallel Session

- <u>Side Branch compromise</u> predicted by OCT, <u>Uemura</u>
- New implications of optimal **SB re-crossing**, Onuma
- Acute malapposition and delayed strut coverage, Foin
- Post-Stent Strut apposition and FU strut coverage assessed by OCT analysis, J-S Kim
- Importance of <u>routine use of OCT</u> in bifurcation treatment, <u>Murasato</u>
- Why I prefer **IVUS** in bifurcation guidance, Yamawaki
- <u>Side Branch evaluation</u> by OCT, DOCTOR left main, Holm
- OCT guided **BVS implantation** in bifurcations, **Motreff**
- OCT in assessment of <u>stent failure at the bifurcation level</u> (ST, ISR), Adriaenssens




Message n°1

- We need intracorononary imaging in Bifurcation management
 - Angiography alone is not enough
 - Suboptimal results are underestimated
 - OCT or IVUS ?

Why I prefer IVUS in bifurcation guidance

Masahiro Yamawaki , MD, PhD Saiseikai Yokohama City Eastern Hospital, Yokohama, Japan On behalf of J-REVERSE Investigators

Y EB

Conclusion

Why I prefer IVUS in bifurcation guidance
Because we can check optimal result after stenting
by IVUS.

In addition, <u>IVUS before- and during PCI</u> helps us to

- (1) know precise anatomy, and predict SB compromise as well as luminal widening after FKI.
- (2) make your final strategy of bifurcation-PCI
- (3) make your procedure logical and predictable!

Dr Yamawaki

- Side Branch compromise predicted by OCT, Uemura
- New implications of optimal **SB re-crossing**, Onuma
- Acute malapposition and delayed strut coverage, Foin
- Post-Stent Strut apposition and FU strut coverage assessed by OCT analysis, J-S Kim
- Importance of <u>routine use of OCT</u> in bifurcation treatment, <u>Murasato</u>
- Why I prefer IVUS in bifurcation guidance, Yamawaki
- Side Branch evaluation by OCT, DOCTOR left main, Holm
- OCT guided **BVS implantation** in bifurcations, **Motreff**
- OCT in assessment of <u>stent failure at the bifurcation level</u> (ST, ISR), Adriaenssens

But the majority defended the superiority of OCT

- Side Branch compromise predicted by OCT, Uemura
- New implications of optimal **SB re-crossing**, Onuma
- Acute malapposition and delayed strut coverage, Foin
- Post-Stent Strut apposition and FU strut coverage assessed by OCT analysis, J-S Kim
- Importance of routine use of OCT n bifurcation treatment, Murasato
- Why I prefer IVUS in bifurcation guidance, Yamawaki
- Side Branch evaluation by OCT DOCTOR left main, Holm
- OCT guided **BVS implantation** in bifurcations, Motreff
- OCT n assessment of <u>stent failure at the bifurcation level</u> (ST, ISR), Adriaenssens

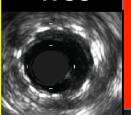
But the majority defended the superiority of OCT

Message n°2

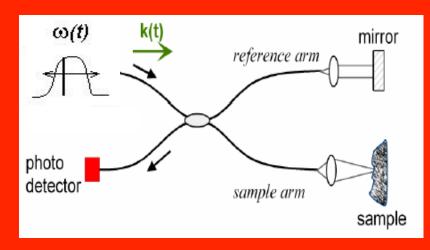
OCT = gold standard in intracoronary imaging

To give more information than IVUS excepted in Ostial LM, or when you need to analyze the deepest layers of the plaque (landing zone)

OCT is essential:

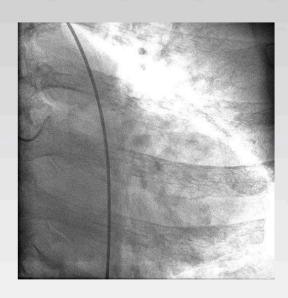

to guide complex procedure to predict procedure complication (immediate, late...) to validate new devices or strategies

New generation OCT :


- -High resolution
- -Easy to use

OFDI/ OCT

IVUS


Frequency domain imaging=OFDI

Resolution	10-20	80-150	200	300	300	200
Time aspect I	Real-time	Real-time	Real-time			Real-time
Time aspect II	2-50 sec	20-50 sec				30 sec
Type of scan source	IR-light	Ultrasound	X-rays	X-rays	Magnetic rays	Visible light
lmaging target	Layer	Layer	Bloodflow	Density	Density	Surface

Longitudinal Reconstruction of FD-OCT Images

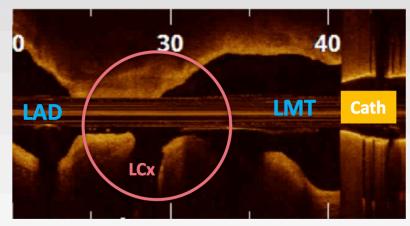
OCT Characterization of Bifurcation Lesions

1) Plaque Morphology

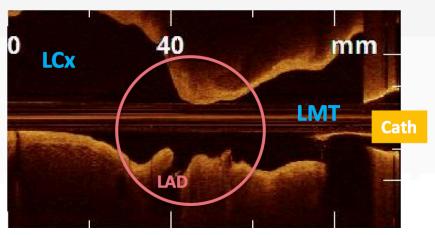
Distribution
Tissue character

2) Condition of SB Ostium

Diameter


Shape

Plaque burden

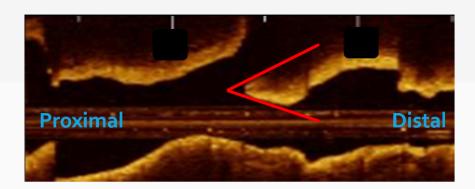

- 3) Bifurcation Angle
- 4) Carina Shape
- 5) Others

FD-OCT superior spatial resolution fast pullback speed

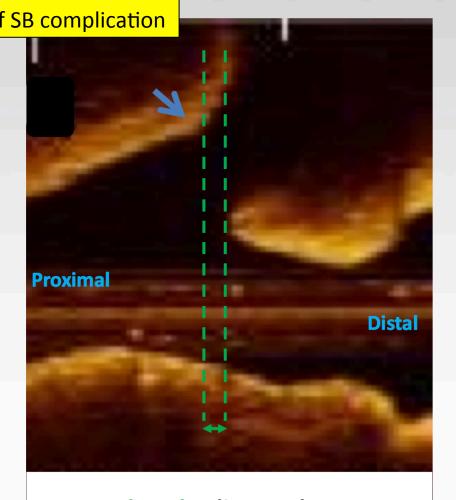
Pullback from LAD to LMT

Pullback from LCx to LMT

Dr Uemura


Planimetric Parameters of Bifurcation Lesion based on Longitudinal OCT Image

Predictive Factors of SB complication

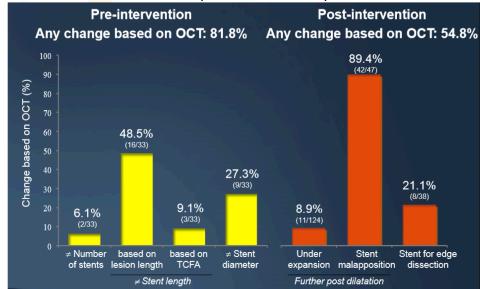

Proximal

Distal

SB angle: angle of side branch

CT angle: angle of carina tip

BP-CT length: distance between proximal branching-point (BP) to carina tip (CT)


Merit of routine use of OCT in bifurcation treatment

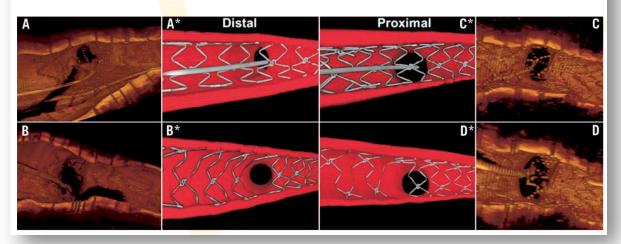
- Accurate assessment
 - ➤ Plaque distribution
 - ➤ Calcification
 - ➤Vulnerable plaque
 - ➤ Stent expansion / apposition
 - ▶Protruded tissue or thrombus
 - ➤ Dissection (edge, intra-stent, POBA site
 - ➤GW recrossing point
 - Stent deformation / Destruction of strut alignment

Routine OCT-guide vs. Angio-guide

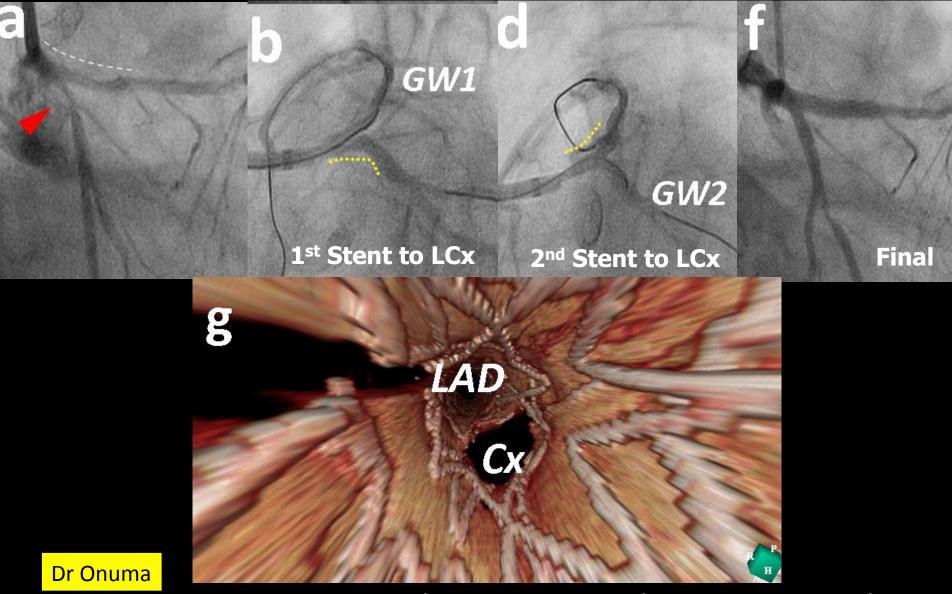
150 consecutive patients, 297 OCT pull backs

Dr Murasato

- Routine use of OCT can provide useful information in vessel condition before and after treatment, which changes the strategy in 50% of the cases.
- It can correct stent malapposition and underexpansion, which may lead to a decrease in cardiac death/MI.
- A decrease in contrast medium or use of dextran can afford to more frequent OCT pull-backs for further examination in the complicated lesion
- 3-D OCT imaging has a possibility to correct GW recrossing point, which leads to decrease in incomplete stent apposition, however, it still requires innovation of image qualities.


Message n°3

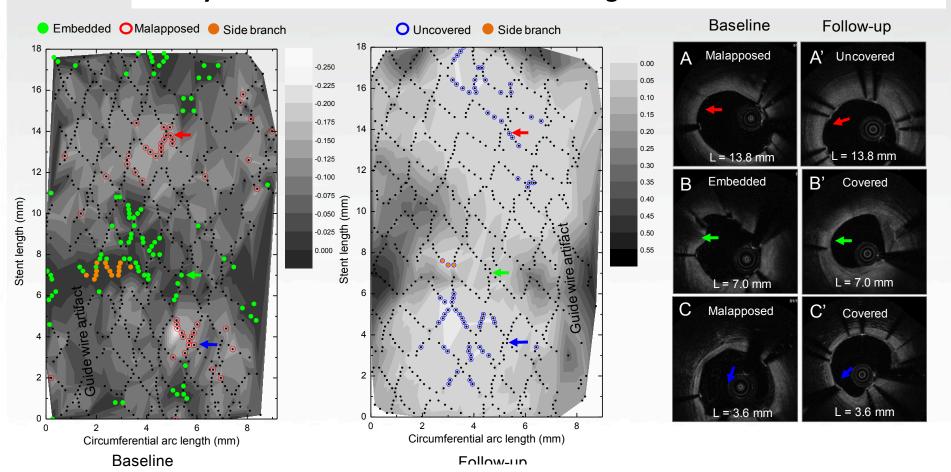
Post-processing algorithms from OCT imaging represent a real improvement and offers new perspectives



Confirmation of GW crossing point (1)

- OCT-guide (n=12) vs. angio-guide (n=40)
- First attempt: correct distal position 67%

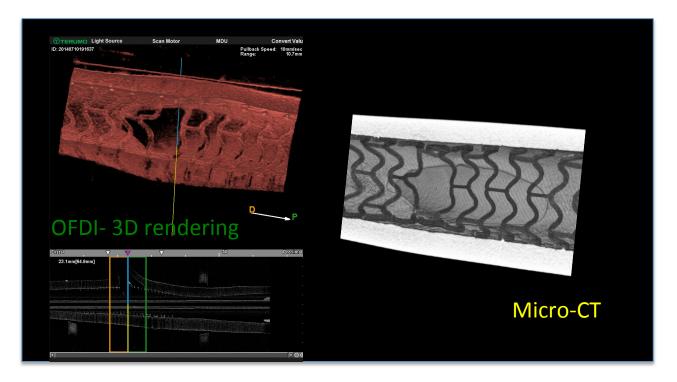
In bifurcation, 3D-OCT may guide positioning of the wire through the appropriate (distal) cell



Contour Plot Analysis

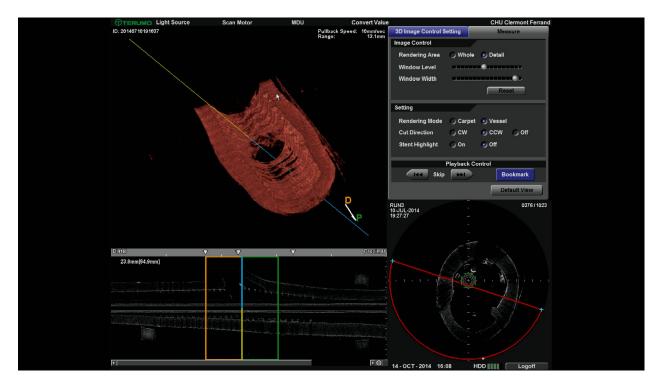
Software providing a Mapping of neointimal healing process after stent implantation.

Using this method, OCT-guided optimization of stent apposition is clearly shown to enhance the strut coverage.



Kim JS, Ha J, et al. J Am Coll Cardiol Interv 2014

OCT Guided BVS implantation in Bifurcation


- OCT is useful to better assess BVS in complex lesion
- Good correlation with micro CT in bench study
- Essential to better know the potential and limits of BVS in Bifurcation treatment apposition, stent fracture, stent distortion, side branch access, wirering position

OCT Guided BVS implantation in Bifurcation

- OCT is useful to better assess BVS in complex lesion
- Good correlation with micro CT in bench study
- Essential to better know the potential and limits of BVS in Bifurcation treatment apposition, stent fracture, stent distortion, side branch access, wirering position

